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Beyond MLP
1 We can generalize MLP

To an arbitrary Directed Acyclic Graph (DAG)
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Forward pass in the computational graph

1 x(0) = x

2 x(1) = φ(1)(x(0);w(1))
3 x(2) = φ(2)(x(0), x(1);w(2))
4 f(x) = x(3) = φ(3)(x(1), x(2);w(1))
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Notation: Jacobian of a general transformation
1

if (a1 . . . aQ) = φ(b1 . . . bR) then we use the notation (1)

[
∂a
∂b

]
=JTφ =


∂a1
∂b1

. . .
∂aQ

∂b1
...

. . .
...

∂a1
∂bR

. . .
∂aQ

∂bR

 (2)

2

if (a1 . . . aQ) = φ(b1 . . . bR; c1 . . . cS) then we use the notation (3)

[
∂a
∂c

]
=JTφ|c =


∂a1
∂c1

. . .
∂aQ

∂c1
...

. . .
...

∂a1
∂CS

. . .
∂aQ

∂cS

 (4)

Dr. Konda Reddy Mopuri dlc-3.6/Backprop beyond MLP & Autograd 4



Notation: Jacobian of a general transformation
1

if (a1 . . . aQ) = φ(b1 . . . bR) then we use the notation (1)

[
∂a
∂b

]
=JTφ =


∂a1
∂b1

. . .
∂aQ

∂b1
...

. . .
...

∂a1
∂bR

. . .
∂aQ

∂bR

 (2)

2

if (a1 . . . aQ) = φ(b1 . . . bR; c1 . . . cS) then we use the notation (3)

[
∂a
∂c

]
=JTφ|c =


∂a1
∂c1

. . .
∂aQ

∂c1
...

. . .
...

∂a1
∂CS

. . .
∂aQ

∂cS

 (4)

Dr. Konda Reddy Mopuri dlc-3.6/Backprop beyond MLP & Autograd 4



Backward pass

1 From the loss equation, we can compute
[

∂`
∂x(3)

]

2 [
∂`

∂x(2)

]
=

[
∂x(3)

∂x(2)

] [
∂`

∂x(3)

]
= JTφ(3)|x(2)

[
∂`

∂x(3)

]
3 [

∂`
∂x(1)

]
=

[
∂x(3)

∂x(1)

] [
∂`

∂x(3)

]
+

[
∂x(2)

∂x(1)

] [
∂`

∂x(2)

]
=JTφ(3)|x(1)

[
∂`

∂x(3)

]
+ JTφ(2)|x(1)

[
∂`

∂x(2)

]
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Backward pass

1 [
∂`

∂w(1)

]
=

[
∂x(3)

∂w(1)

] [
∂`

∂x(3)

]
+

[
∂x(1)

∂w(1)
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Developing DNN architectures

1 Developing large architectures from scratch is tedious

2 DL frameworks facilitate with libraries for

tensor operators
mechanisms to combine them into DAGs
automatically differentiate them
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Autograd
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Gradient Computation

1 PyTorch automatically constructs on-the-fly graph to compute
gradient of any wrt any tensor

2 Via autograd
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Autograd

1 Easy to use syntax: only need to define the sequence of forward pass
operations

2 Flexible: Computational graph can be dynamic, so is the forward pass
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Autograd in PyTorch

1 A tensor has the Boolean field ‘requires_grad’

2 PyTorch knows if it has to compute gradients wrt this tensor or not
3 Default is False
4 requires_grad_() function can be used to set to any value
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Autograd

1 torch.autograd.grad(o/p,i/p) returns gradients of outputs wrt
the inputs
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Backward()

1 Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph

2 Tensor.grad field accumulates these gradient
3 Standard function used to train the models.
4 Since it ACCUMULATES the gradients, one may need to set

Tensor.grad to zero before calling it
5 Accumulation is helpful (e.g. sum of losses, or sum over different

mini-batches, etc.)
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torch.no_grad()

1 Switches the autograd machinery off

2 Useful for operations such as parameter updation

Dr. Konda Reddy Mopuri dlc-3.6/Backprop beyond MLP & Autograd 14



torch.no_grad()

1 Switches the autograd machinery off
2 Useful for operations such as parameter updation

Dr. Konda Reddy Mopuri dlc-3.6/Backprop beyond MLP & Autograd 14



detach()

1 Creates a tensor which only shares data but doesn’t require gradient
computation

2 Not connected to the current graph
3 Used when gradient should not be propagated beyond a variable, or

to update the leaf nodes in the graph
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Some Notes

1 By default, autograd deletes the computational graph after it is
evaluated

2 retain_graph indicates to keep it
3 Graph can compute on the gradient tensor also, and Autograd can

compute higher-order derivatives
4 Specified with create_graph = True
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Demo

Colab Notebook: Backword()

Dr. Konda Reddy Mopuri dlc-3.6/Backprop beyond MLP & Autograd 17

https://colab.research.google.com/drive/1TwTX3QN2mp3JYvPgRIpUzkiHjKOA0aM_?usp=sharing

